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Abstract: The rapid development of remote sensing technologies and the availability of many satellite
and aerial sensors have boosted the collection of large volumes of high-resolution images, promoting
progress in a wide range of applications. As a consequence, Object detection (OD) in aerial images
has gained much interest in the last few years. However, the development of object detectors requires
a massive amount of carefully labeled data. Since annotating datasets is very time-consuming and
may require expert knowledge, a consistent number of weakly supervised object localization (WSOL)
and detection (WSOD) methods have been developed. These approaches exploit only coarse-grained
metadata, typically whole image labels, to train object detectors. However, many challenges remain
open due to the missing location information in the training process of WSOD approaches and to the
complexity of remote sensing images. Furthermore, methods studied for natural images may not be
directly applicable to remote sensing images (RSI) and may require carefully designed adaptations.
This work provides a comprehensive survey of the recent achievements of remote sensing weakly
supervised object detection (RSWSOD). An analysis of the challenges related to RSWSOD is presented,
the advanced techniques developed to improve WSOD are summarized, the available benchmarking
datasets are described and a discussion of future directions of RSWSOD research is provided.

Keywords: weakly supervised object detection (WSOD); remote sensing; satellite images; aerial
imagery; survey

1. Introduction

The availability of vast collections of aerial images has boosted the interest in methods
for extracting information at various levels of detail, such as image classification [1], object
detection [2], and instance segmentation [3]. In particular, Object Detection (OD) is one of
the most challenging tasks of Computer Vision (CV) and has received significant attention
over the last few years. Today’s state-of-the-art object detectors can achieve outstanding
performance under a fully supervised setting for natural images [2]. However, Fully
Supervised Object Detection (FSOD) methods suffer from two major limitations:

• Annotation effort: the process of producing Bounding Box (BB) annotations, i.e.,
of delineating the object boundaries to provide the metadata necessary for the full
supervision, is very time-consuming and non-trivial.

• Domain generalizability: most detectors have been developed to deal with natural
images, i.e., images that portray one or more instances of common objects. However,
other types of images (such as medical and aerial images) have more complex content,
are less easy to collect and annotate, and may induce a drop in performance if domain-
specific issues are not addressed (e.g., class imbalance, label noise, heterogeneous
organs, and lesion appearance) [4,5].
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Such drawbacks are critical when dealing with domain-specific applications such as
earth observation and environmental monitoring, in which large collections of Remote
Sensing Images (RSIs) acquired from satellites or other airborne sensors at different scales
and resolutions are publicly available. Still, annotating such images is very time-consuming
and challenging: the targets usually occupy a small portion of the whole image, which
makes the annotation task particularly hard. Objects may be occluded, thus leading to
less precise annotations. Regions and objects of interest can be highly domain-specific,
e.g., in tasks such as illegal landfill detection [6], which requires expert knowledge for
target identification and localization. As a consequence, general-purpose crowdsourcing
platforms, which have been used to annotate popular natural image datasets such as
ImageNet [7], cannot be exploited for RSI annotation.

Figures 1 and 2 illustrate the fundamental difference between RSIs and natural images.
In RSIs:

• Objects normally occupy a small portion of the image, while in natural images few
large objects are usually present.

• The background is complex and cluttered and multiple target objects coexist.
• Some target objects (e.g., ships and vehicles) can be extremely small and dense, while

some other targets (e.g., ground track fields) can cover a large area.
• The target objects can have arbitrary orientations, whereas they often appear with

horizontal orientation in natural images.
• The target objects are seen from an aerial viewpoint, whereas in natural images their

profile is visible.
• The target objects may have high intra-class diversity (e.g., vehicles or aircraft of

different shape, size, etc.) and inter-class similarity (e.g., a landfill vs. a quarry).

Figure 1. Examples of natural images from the PASCAL VOC dataset [8] and of RSIs from the DIOR [9]
and DOTA [10] datasets. It is possible to observe that natural images usually contain few large objects
while RSIs contain multi-scale, arbitrarily oriented objects with diverse spatial arrangements.

Unsurprisingly, models learned from natural images are hardly transferable to the
remote sensing (RS) domain [9]. In addition, the difficulty of manually creating object
bounding boxes hinders the production of effective FSOD methods relying only on fully
annotated RSIs.
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Figure 2. RSI challenges on images from the NWPU-RESISC45 dataset [11].

To account for the lack of fine-grain annotations such as object bounding boxes, several
object detection methods have been developed that leverage only coarse-grain annotations
(especially image-level labels indicating only the presence or absence of an object) [12].
This approach is called inexact Weak Supervision (WS) and introduces a new branch of OD
called weakly supervised object detection (WSOD). WSOD has already been effectively
applied to natural images [12–14] but is still an open problem in the RS domain [15–18] due
to the described challenges. To the best of our knowledge, there is not yet a comprehensive
review of the application of WSOD methods for RSIs.

1.1. Focus of the Survey

This survey reviews the recent advancements in WSOD techniques in the RS domain.
The focus is twofold: accurately describing the available techniques and comparing their
performance on RSI datasets.

In recent years, the RS domain has been gaining more interest and novel methods
have been continuously proposed. In particular, WSOD offers many possibilities for
applications that otherwise would not be possible due to the large number of manual
annotations required, e.g., vehicle detection [19–21], marine animal detection [22], or
defective insulator detection [23]. We introduce a timeline to precisely define the evolution
of RSWSOD methods and describe the pros and cons and the challenges of each state-of-the-
art method. Yue et al. [24] present a brief general overview of weakly supervised learning
on RSIs. The authors describe the main concepts and divide the surveyed techniques
into three main categories: inexact supervision, inaccurate supervision, and incomplete
supervision. Based on their categorization, this survey focuses on the inexact supervision
class, because fine-grained annotations are the most difficult type of metadata to obtain
for RSIs.

Training and evaluating neural models on the right data is essential for any ML-based
application. The dataset comparison proposes an analysis of the most popular RSI datasets
and concentrates on their characteristics and per-class performance. Since many RSWSOD
methods are use-case specific and cannot be directly compared with other works (e.g.,
tree species classification [25,26]), Section 3.2.4 briefly describes the main achievements
obtained by use-case-specific methods.

1.2. Methodology

The research target comprises methods that leverage coarse-grained labels (e.g., image-
level or point-based) to address the WSOD task in the RS domain. Only the proposals that
provide an OD solution under inexact supervision are reported. This perimeter excludes
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those contributions that address OD under incomplete supervision, inaccurate supervision,
and no supervision. For this reason, all methods that exploit self-supervised learning,
active learning, unsupervised learning, noisy labels, or crowdsourcing-based approaches
are excluded from the search.

The corpus of the relevant research has been identified by following the PRISMA
procedure [27] for systematic reviews. Figure 3 illustrates the adopted workflow.

1. The search was conducted on the Scopus database since it has been demonstrated to
support bibliographic analysis better than other repositories [28]. The search phrases
were composed as follows:

<search> :- <task> AND <domain>
<task> :- weak supervision | inexact supervision |

weakly supervised | weakly supervised learning |
weakly supervised deep learning |
weakly supervised object detection

<domain> :- remote sensing | remote sensing images |
earth observations | aerial images |
synthetic aperture radar images |
satellite images | multispectral images |
hyperspectral images

The search results were filtered to retain only contributions in journals, conferences,
and workshops.

2. The initial corpus, composed of 528 works, was reduced by removing duplicates:
196 works were kept. Next, we identified and eliminated the studies unrelated to
RSWSOD by checking each contribution’s title, keywords, and abstract. The reduced
corpus contained 42 contributions.

3. In the remaining corpus, the full text of 3 articles was unavailable. Thus, the corpus
was reduced to 39 contributions.

4. A final eligibility filter was applied and the full text of the remaining articles was
read. In particular, 2 articles were removed because the task was not OD, 3 articles
were removed because they were not related to inexact supervision, and 1 article was
excluded because it was a draft of another already considered work. This final step
yielded the 33 works considered in this survey.

1.3. Contributions

The contributions of this paper can be summarized as follows:

• A total of 33 RSWSOD methods are identified from an initial corpus of 528 papers
resulting from a keyword search.

• The most suitable dimensions for analyzing the methods are identified and described
(year, approach, annotation type, proposal generation method, addressed challenges,
and use case). The techniques are described and compared based on these dimensions.

• A list of the most used datasets for RSWSOD is provided and the methods are com-
pared based on their performance.

• A list of open issues in the RSWSOD field and possible future research directions are
identified and discussed.

The rest of the paper is organized as follows: Section 2 describes the main RSWSOD
challenges and describes state-of-the-art RSWSOD architectures; Section 3 presents the most
common RS datasets and compares the performances of the surveyed methods; Section 4
highlights the open issues and discusses the relevant research directions; and Section 5
draws the conclusions.
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Figure 3. PRISMA flow diagram of the systematic review.

2. Remote Sensing Weakly Supervised Object Detection

Given an image, Remote Sensing Fully Supervised Object Detection (RSFSOD) aims to
locate and classify objects based on BB annotations. Differently from RSFSOD, RSWSOD
aims to precisely locate and classify object instances in RSIs using only image-level labels
or other types of coarse-grained labels (e.g., points or scribbles) as ground truth (GT).
Figure 4 presents an example. Due to the missing training information regarding the
location of the objects, the performance gap between RSFSOD and RSWSOD is still large
(≈30–40% mAP), even though several efforts have been made to improve the accuracy of
RSWSOD techniques.

Figure 4. Visual explanation of RSFSOD and RSWSOD. In the top image, the green BB represents the
ground-truth location information as given to the fully supervised detector. Such information is not
present during the training of a weakly supervised detector, as shown in the bottom image.

This section presents the issues to be tackled in RSI OD, provides a taxonomy of the
WSOD task, and categorizes and describes the 33 RSWSOD architectures under analysis.
Table 1 reports a summary, indicating for each method: annotation type, approach category,
proposal type, if it is use-case specific or generic, and the RSI challenges addressed. Proposal
type indicates the technique used to generate areas of interest that are then processed to
create bounding boxes.
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Table 1. A summary of surveyed RSWSOD methods and of the main RSI challenges they address.
The Xsymbol means that the work addresses the specific problem listed in the column. No check
marks denote the works that study RSWSOD in general without focusing on specific problems.

Name Year Annotation
Type Approach Proposals Use Case-

Specific
Partial

Coverage
Multiple-
Instance Density Speed Generalizability

Zhang et al. [29] 2014 Image TSI + TDL Sb-SaS Aircraft
Detection

Zhang et al. [30] 2014 Image TSI + TDL Sb-SaS Generic

Han et al. [31] 2014 Image TSI + TDL SW Generic

Cheng et al. [32] 2014 Image TSI + TDL SW Generic

Zhou et al. [33] 2015 Image TSI + TDL Sb-SaS Generic

Zhou et al. [34] 2016 Image TSI + TDL Sb-SaS Generic

LocNet [35] 2016 Image TSI + TDL RPN Aircraft
Detection X

Cao et al. [36] 2017 Region MIL SW Vehicle
Detection

MIRN [37] 2018 Region MIL n/d Vehicle
Detection X

SLS [38] 2018 Scene CAM Heatmap Generic X X

Du et al. [20] 2019 Image TSI + TDL CFAR Generic

WSA [39] 2019 Image CAM Heatmap Aircraft
Detection X X

Aygunes et al. [25] 2019 Image MIL SW Tree-species
classification

FCC-Net [40] 2020 Image MIL SS Generic X

DCL [41] 2020 Image MIL SS Generic X

PCIR [15] 2020 Image MIL SS Generic X X X

AlexNet-WSL [42] 2020 Image CAM Heatmap Aircraft
Detection X

Shi et al. [23] 2020 Coarse BB,
Count Other RPN Cap Missing

Detection X

TCANet [16] 2020 Image MIL SS Generic X X X

MPFP-Net [43] 2021 Image MIL Random Generic X X

Aygunes et al. [26] 2021 Image MIL SW Tree-species
classification

Sun et al. [44] 2021 HBB Other RPN Generic X X

Wang et al. [45] 2021 Image MIL + CAM SS,
Heatmap Generic X

Li et al. [46] 2021 Point Other SS Generic X X

MIGL [47] 2021 Image MIL SS Generic X X

Li et al. [48] 2021 Image,
Count Other RPN Terrain Feature

Detection X

SAENet [49] 2021 Image MIL SS Generic X

Berg et al. [22] 2022 Image Other Heatmap Marine Animals
Detection X

Long et al. [50] 2022 Image CAM Heatmap Generic X X

PistonNet [21] 2022 Image Other Heatmap Ship
Detection X

SDA-RSOD [17] 2022 Image CAM Heatmap Generic X X X

SPG + MELM [51] 2022 Image MIL RPN Generic X X

Qian et al. [18] 2022 Image MIL SS Generic X X
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2.1. Coarse-Grained Annotations

FSOD requires manual BB annotations, also referred as instance-level labels. Con-
versely, WSOD relies on coarse-grained annotations, i.e., all the types of labels considered
less expensive to obtain than BBs.

The most common types of annotation used to perform RSWSOD are image-level labels,
indicating the presence of at least one instance of a target object class. It is also possible
to use other metadata, such as region-level annotations, suggesting the presence of at least
one instance of an object in a portion of the image. A less popular coarse-grained annotation
is represented by scene-level labels that record only the class of the most dominant object in
the image.

Another weak RSWSOD annotation is the count of the number of class instances in an
image. To alleviate the gap between fully supervised and weakly supervised approaches,
point annotations have also been exploited. The idea behind these annotations is that point
labels are far cheaper to obtain than BBs [46] and they significantly increase the model
performance. Still, fully supervised performance has not been matched by any weakly
supervised method.

2.2. Main Challenges

In general, WSOD presents three main challenges related to the use of coarse-grained
annotations [12]:

• Partial coverage problem: This may arise from the fact that the object detection
proposals computed by the WSOD method with the highest confidence score are those
that surround the most discriminative part of an instance. If proposals are selected
solely based on the highest score, the detector will learn to focus only on the most
discriminative parts and not on the entire extent of an object (discriminative region
problem). Another problem may derive from proposal generation methods such as
Selective Search [52] and Edge Boxes [53], which output proposals that may not cover
the entire targets well, reducing the performances of the detector (low-quality proposal
problem).

• Multiple-instance problem: The model may have trouble trying to accurately distin-
guish multiple instances when there are several objects of the same class. This is due
to the fact that most detectors [13,14] select only the highest-scoring proposal of each
class and ignore other relevant instances.

• Efficiency problem: Current proposal generators (e.g., Selective Search [52] and Edge
Boxes, [53]) largely used in WSOD are very time-consuming.

The characteristics of the RSIs discussed in Section 1 introduce additional challenges:

• Density problem: Images often contain dense groups of instances belonging to the
same class. Models usually have difficulties in accurately detecting and distinguishing
all the instances in such densely populated regions.

• Generalization problem: The high intra-class diversity in RSIs induces generalization
problems mainly due to three factors:

– Multi-scale: Objects may have varying sizes, and their representation strongly
depends on the image resolution and ground sample distance (GSD).

– Orientation variation: Instances present arbitrary orientations and may require
the use of methods generating Oriented bounding boxes (OBB) instead of the
classical horizontal bounding boxes (HBB).

– Spatial complexity: In general, RSIs show varying degrees of complexity in the
spatial arrangement of the objects.

Table 1 overviews the challenges addressed by each surveyed method. Three issues
are studied by most methods: partial coverage, speed, and generalizability. Partial coverage
and speed are mainly addressed by specific types of approaches: MIL-based methods deal
with partial coverage, while CAM-based methods deal with speed. This is connected with
the specific characteristics of the architectures (discussed in Section 2.3), e.g., MIL-based
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techniques require the use of external proposal generators that may not cover the object
completely, thus harming the learning process. Instead, generalizability is a more common
issue across all approaches. The multiple-instance and density problems are closely related
and are very common issues in RSIs but are studied by very few methods. An example
of these two challenges is shown in Figure 1, where a parking lot contains more than
60 instances of the same class.

2.3. Weakly Supervised Object Detection Approaches

As reported by Zou et al. [54], in the past two decades, the progress of OD has
gone through two periods: “traditional object detection period (before 2014)” and “deep-
learning-based object detection period (after 2014)”. Being more specific branches of OD,
both WSOD and RSWSOD have gone through the same historical phases. Figure 5 presents
a timeline of FSOD, WSOD, and RSWSOD with important milestones (indicated by a green
flag) for each task. More specifically, during the traditional object detection period, most
WSOD approaches were based on the usage of support vector machines (SVMs), the MIL
framework [55,56], and the exploitation of low-level and mid-level handcrafted features
(e.g., SIFT [57] and HOG [58]). These methods obtained promising results on natural
images but were difficult to apply to RSIs due to the previously discussed difficulties.
With the advent of DL, OD architectures became more powerful and obtained successful
results in many fields but required a large amount of annotated data. For this reason, many
researchers shifted their focus to weakly supervised approaches. In Figure 5, it is interesting
to note that most RSWSOD methods have been developed after specific WSOD milestones:
CAM, WSDDN, and OICR.

Figure 5. Timeline of the milestones in RSWSOD, with a comparison with FSOD [2,54] and WSOD [12]
through the years. The flag symbol is used to represent milestones, while a simple line is used to
denote other relevant methods. For the sake of clarity, not all methods have been reported [18,29].

Several approaches have been proposed to address the WSOD task. Four major
categories can be identified depending on how the detector is trained:

• TSI + TDL-based: These approaches are based on a simple framework that consists
of two stages: training set initialization (TSI) and target detector learning (TDL).

• MIL-based: These approaches are based on the Multiple Instance Learning (MIL)
framework.

• CAM-based: These approaches are based on Class Activation Maps (CAMs), a well-
known explainability technique.

• Other DL-based: Few methods reformulate the RSWSOD problem starting from the
implicit results of other tasks, e.g., Anomaly Detection (AD).

This section provides a brief introduction to each category, describes the RSWSOD
methods pertaining to them, and considers the addressed challenges.

2.3.1. TSI + TDL-Based

Before the advent of deep learning (DL), most object detectors were based on SVMs.
The workflow behind these methods is to start by producing candidate proposals exploiting
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either a Sliding Window (SW) [31,32,36] or Saliency-based Self-adaptive Segmentation
(Sb-SaS) [29,30,33,34] approach. SW generates proposals by sliding, on the entire image,
multiple BBs with different scales while Sb-SaS produces saliency maps that measure
the uniqueness of each pixel in the image and exploit a multi-threshold segmentation
mechanism to produce BBs. Both methods try to deal with the variation in the target size
and the resolution of the images. Each proposal is characterized using a set of low- and
middle-level features derived from methods such as SIFT [57] and HOG [58]. The extracted
features can be further manipulated to produce high-level ones. Then, sets of positive and
negative candidates are chosen to initialize the training set. The training procedure is then
composed of two steps: (1) the training of the detector and (2) the updating of the training
set by modifying the positive and negative candidates. These steps are repeated until a
stopping condition is met.

The first attempts to apply WSOD techniques to aerial images were performed by
Zhang et al. [29,30] in 2014. The idea is to mine positive and negative samples to initialize
the training set and then exploit an iterative training scheme to refine the detector and
update the training set using a weakly supervised SVM. However, this method ignores
some critical information, which could improve the detector performance, such as intra-
class compactness and inter-class separability. For this reason, Han et al. [31] propose
a probabilistic approach using the Bayesian rule [59] to jointly integrate saliency, intra-
class compactness, and inter-class separability to better initialize the training set. This
work also highlights the limitations of low- and mid-level feature extractors that are not
powerful enough to effectively describe objects in RSIs due to the influence of the cluttered
background. The authors propose the use of a Deep Boltzmann Machine (DBM) [60]
to extract high-level features. All these methods focus on the problem of single-object
detection. Cheng et al. [32] propose the Collection of Part Detectors (COPD) [19] composed
of a set of weakly supervised SVM detectors to perform multi-object detection.

With the advent of convolutional neural networks (CNNs) [61], both WSOD and
RSWSOD methods started to benefit from the powerful feature extraction capabilities of
deep architectures. In 2015, Zhou et al. [33,34] proposed exploiting transfer learning on a
CNN to extract high-level features to feed to an SVM-based detector. The authors further
highlight the importance of the process used to select negative instances for training. Most
previous methods select random negative samples, which may cause the deterioration
or fluctuation of the performance during the iterative training procedure. The reason
is that negative samples which are visually similar to positive samples tend to be easily
misclassified. Thus, selecting ambiguous negative samples is fundamental to enhance the
effectiveness and robustness of the classifier. The authors propose using negative bootstrap-
ping instead of random selection for negative samples, building a more robust detector.
This technique is still taken into consideration even in modern state-of-the-art methods.

Even though these methods improve over previous ones, they are still affected by
two significant limitations. First, most of these techniques were proposed to address the
task of single-object detection, but RSIs usually contain multiple instances and classes.
Second, previous methods extracted proposals using either an SW or Sb-SaS approach,
which are very time-consuming. In 2016, Zhang et al. [35] proposed the use of coupled
CNNs that integrate a Region Proposal Network (RPN) [62] to perform aircraft detection
more efficiently.

From Table 1 it can be seen that TSI + TDL-based methods do not focus on any specific
RSI challenge. The first works aimed to propose working solutions for weakly supervised
learning on RSIs while subsequent works concentrated on demonstrating the effectiveness
of more powerful feature extractors.

Later on, researchers moved towards MIL-based and CAM-based methods thanks to
the advancements in the DL field and the development of more powerful feature extractors
and CV architectures.
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2.3.2. MIL-Based

In MIL-based approaches, each image is treated as a collection of potential instances of
the object to be found. Typically, MIL-based WSOD follows a three-step pipeline: proposal
generation, feature extraction, and classification.

Proposal generation aims to extract a certain number of regions of interest, i.e., those
areas that may contain object instances, from the image. This can be accomplished in
several different ways, with the basic approach being Sliding Window. More advanced
and efficient proposal generation methods have been proposed, such as Selective Search
(SS) [52], which leverages the advantages of both exhaustive search and segmentation to
generate initial proposals, or Edge Boxes (EB) [53], which uses object edges to generate
proposals. These methods are built to have a high recall, so the generated candidates are
very likely to contain an object instance. However, these methods are very time-consuming.
To solve this issue, it is possible to either exploit CAM-based approaches in which there is
no region proposal generation step or directly integrate the region proposal generation and
feature extraction steps into the network using an RPN. The latter exploits CNNs and can
extract more relevant features for the areas of interest and speed up the process. Despite
their advantages, RPNs are not largely used in WSOD since traditional techniques have
been proven to work well with natural images.

Feature extraction is needed to compute a feature vector for each candidate region
extracted in the previous step. Features can be handcrafted or extracted by a CNN as
in DL methods. Classification is the last step and performs WSOD by reformulating the
problem as an MIL classification task. The MIL problem was first introduced in [55]. In
image classification, each image is considered as a bag, containing a set of feature vectors to
be classified (one for each region proposal). For the training step, each image (or bag) is
assigned a positive or negative label based only on the image-level label, i.e., the presence
or absence of a specific class. Thus, an image can be represented as a positive bag for one
class, while a negative bag for another class not present inside such an image (Figure 6).
The aim is to infer instance-level labels for the proposals inside each image.

Figure 6. An example of positive/negative bags for the “airplane” class. Bounding boxes correspond
to the proposals input to the network; blue indicates positive instances, while red indicates negative
instances. MIL-based WSOD aims to differentiate between positive and negative instances based
only on image-level labels.

In 2016, Bilen and Vedaldi proposed Weakly Supervised Deep Detection Network
(WSDDN) [13], a MIL-based approach that can be considered a significant milestone for
WSOD research. The idea behind WSDDN is a two-stream network that aims to perform
both classification and localization. The classification branch computes the class score of
each proposal, and the detection branch computes the contribution of each proposal to
the image being classified as a specific class. These scores are then multiplied for each
region and summed to obtain the final prediction score. Inspired by this work, one year
later, Tang et al. proposed OICR [14], an improvement over WSDDN that tries to mitigate
the discriminative region problem that characterizes the previous network by adding
refinement branches. Many WSOD methods were developed based on OICR [63]. These
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methods focused on solving the limitations of the previous techniques, especially the
discriminative region and the multiple-instance problems. The latter is essential because
only the highest-scoring proposal was selected as a positive instance during training,
ignoring that several instances may be present in the same image. Thus, a poor performance
was obtained on multi-instance images. Shao et al. present an extensive review of WSOD
methods on natural images [12].

The influence of WSDDN and OICR also affected the remote sensing community.
However, the performance drop was severe. For this reason, many researchers focused on
solving the RSWSOD problem by improving WSOD techniques and adding new modules
that could overcome RSI challenges. Cao et al. [36] exploited MIL and density estimation to
predict vehicles’ locations starting from region-level labels. In 2018 (one year after OICR),
Sheng et al. proposed MIRN [37], a MIL-based approach that tries to leverage the count
information and an online labeling and refinement strategy, inspired by OICR, to perform
vehicle detection, solving the multiple-instance problem.

Following the same direction, Feng et al. developed PCIR [15], an OICR-inspired
method that tries to address the multiple-instance problem and the discriminative region
problem. They exploit a context-based approach that diverts the focus of the detection
network from the local distinct part to the whole object and further to other potential
instances. PCIR alleviates the influence of negative samples induced by complex back-
grounds by dynamically rejecting the negative training proposals. The same year, Feng et
al. proposed another context-based method called TCANet [16], composed of two modules.
The first module activates the features of the whole object by capturing the global visual
scene context, alleviating the discriminative region problem. The second module captures
the instance-level discriminative cues by leveraging the semantic discrepancy of the local
context, thus distinguishing better adjacent instances and addressing the density problem.
This network was further improved with the development of SAENet [49], which exploits
an adversarial dropout–activation block to solve the discriminative region problem. The
authors address the fact that most state-of-the-art methods ignore the consistency across
different spatial transformations of the same image, causing them to be labeled differently.

In 2020, Yao et al. [41] observed that many current methods fail to provide high-quality
initial samples, consequently deteriorating the detector performance. To solve this issue,
the authors proposed considering the image difficulty while training using a dynamic
curriculum learning strategy [64]. The reason behind the authors’ work is that training the
detector using curriculum learning, i.e., feeding training images with increasing difficulty
that matches the current detection ability, improves the detector performance. This intuition
was supported by the recent advances in WSOD [65,66]. Another interesting concept is
considered by Chen et al. [40] for FCC-Net. They showed that training an RSWSOD and
an RSFSOD network, alternatively, can improve the detector performance. In this case,
the fully supervised ground truth is given by the refined BBs generated by the weakly
supervised branch. This technique can also mitigate the multi-scale problem.

Wang et al. [47] proposed MIGL, an improved version of PCL [63], to find all possible
instances based on the apparent similarity. This was achieved by exploiting clustering and
a novel spatial graph voting strategy to identify high-quality objects, further alleviating
the discriminative region problem. Other approaches have tackled the same problem.
Shamsolmoali et al. [43] proposed a multi-patch feature pyramid network (MPFP-Net)
trained using smooth loss functions based on the fact that the non-convexity of MIL is the
major cause of the discriminative region problem. Using this network, the authors could
also address the multi-scale problem.

Wang et al. [45] proposed an interesting MIL-based approach inspired by PCL to
perform object detection. The key innovation is the proposal generation step. A novel
pseudo-label generation (PLG) algorithm is developed combining Selective Search [52] with
the information provided by a CAM-based weakly supervised localization model. This way,
by intersecting the results of SS with those of the WSOL method, low-quality proposals
can be effectively suppressed. This is a significant improvement because MIL-based
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approaches cannot produce high-quality detectors starting from low-quality proposals, as
already observed in [41]. This is further pointed out by Cheng et al. [51] who propose SPG
based on an RPN that exploits the objectness confidence score to generate high-quality
proposals. The authors show that using the proposed RPN in place of standard techniques
(e.g., Selective Search) can improve the performance of previous MIL-based methods such
as OICR [14] and MELM [67]. The method is indicated as (SPG + MELM).

Recently, Qian et al. [18] considered image difficulty from a different perspective. The
authors were the first to highlight that an imbalance between easy and hard samples causes
the network to fail in detecting objects in the few available hard samples. To solve this
challenge, they took advantage of the context information provided by a WS segmentation
method [68] to evaluate the difficulty of each sample. They also exploited the idea of mining
and regressing pseudo-GT BB to improve performance [69]. The authors also address the
discriminative region problem.

Table 1 shows that MIL is the most widely used framework (≈42%) to solve RSWSOD.
Most of the surveyed MIL methods are applied to generic scenarios, even though some
specific applications have been studied (e.g., vehicle detection, tree species classification).
Moreover, these approaches tend to focus on addressing the partial coverage, the multiple-
instance, and the difficulty problems. Few works exist that address the density problem
or the speed problem, which is a crucial point for real-time applications. Few MIL-based
approaches do not address any of the described challenges. The reason is that either the
work focuses on just reducing the effort of fully annotating datasets [36] or they are use-
case-specific and thus solve more specific challenges [25,26]. Figure 7 presents a comparison
of proposal generation techniques used in WSOD and RSWSOD. It can be noted that for
both tasks, the most used method is Selective Search (≈55%), followed by Sliding Window
(SW) and Edge Boxes (EB) which are employed by fewer works.

Figure 7. Type of proposals used in WSOD and RSWSOD MIL-based methods. SS stands for Selective
Search, EB for Edge Boxes, SW for Sliding Window, and RPN for region proposal network. It is
possible to notice that in both cases, Selective Search is the most used proposal generation technique.
WSOD data are provided by [12].

2.3.3. CAM-Based

CAM-based approaches formulate the WSOD problem as a localizable feature map
learning problem. The idea comes from the fact that every convolutional unit in the CNN
is essentially an object detector and is able to locate the target object in the image [70]. For
example, suppose the object appears in the upper left corner of the image; in that case,
the upper left corner of a feature map after a convolutional layer will produce a greater
response. These localization capabilities of CNNs have been further studied in other works
such as [71,72].

Class activation maps [72] were introduced in 2016 as a weighted activation map
(heatmap) showing the areas contributing the most to the classification. CAMs do not
require any additional label or training and can be obtained from the last fully connected
layer of a CNN. Bounding boxes can be produced by thresholding the CAM values. Figure 8
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shows an example. After that, many different CAM variants and CAM-based methods were
proposed for WSOD and especially for weakly supervised object localization (WSOL) [12].

Figure 8. In the middle, an example of CAM for the “airplane” class obtained from the image on
the left. On the right, the green BB is the ground truth, whereas the red BB is the one obtained by
thresholding the CAM values.

In the remote sensing community, researchers have started to exploit CAM-based
approaches for the task of aircraft detection. In 2018, Li et al. [38] proposed a Siamese
network to overcome the fact that existing methods tend to take scenes as isolated ones and
ignore the mutual cues between scene pairs when optimizing deep networks. Moreover, a
multi-scale scene-sliding-voting strategy is implemented to produce the CAM and solve
the multi-scale problem. The authors further propose different methods for thresholding
the CAM and observe that detection results for each class have a strong dependence on the
chosen thresholding method. Ji et al. [39] proposed a method to reduce the false detection
rate that affects many aircraft detectors producing a more accurate attention map.

In 2020, Wu et al. [42] proposed AlexNet-WSL, an effective way of using CAMs for
aircraft detection using a modified AlexNet CNN [61] as the backbone. In the following
work [17], the authors state that it is difficult to adapt MIL to the complexity and diversity
of image data in the real world and propose a CAM-based method (SDA-RSOD) based
on two components: a divergent activation module and a similarity constraint module.
These allow users to distinguish among adjacent instances and detect multiple instances,
mitigating the density and multiple-instance problems. This is achieved by exploiting
shallow CAMs extracted from the shallow layers of the network, and deep CAMs extracted
from deep layers. The former can retain better location information while the latter allow
a more accurate categorization. This work shows the importance of shallow features for
RSIs [73].

A different approach has been proposed by Long et al. [50]. The authors define an
RSWSOD method based on CAMs to perform object detection without extent. This means
that objects are not identified using bounding boxes but instead by a single point (x, y).
This type of localization has been rarely approached in the remote sensing community and
further research needs to be pursued.

Table 1 shows that CAM-based methods are less used for RSWSOD (≈18%). This
could be due to the fact that these methods work well when few big instances are present
in the image. In fact, several CAM-based methods have been developed in the last few
years, especially for the task of weakly supervised object localization (not part of the
survey) [73–77]. It can also be observed that they are often used for tasks such as ship
detection and airplane detection. Moreover, these methods can speed up the process of
RSWSOD by avoiding the use of region proposal methods while only a couple of the
analyzed works tried to address other RSI challenges.

2.3.4. Other DL-Based

In the literature, several studies present DL approaches that cannot be assigned to the
TSI + TDL, MIL, or CAM categories.

A relevant characteristic of RSIs is that objects can have arbitrary orientations. How-
ever, in the majority of cases, horizontal bounding boxes (HBB) are used to enclose objects.
This may cause the deterioration of the detector performance, in particular when the back-
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ground is complex [23]. Oriented bounding boxes (OBB) have already been used under full
supervision [78,79] and Sun et al. [44] proposed a method to address the task of weakly
supervised oriented object detection in RSIs by exploiting HBB.

Aygunes et al. [25] addressed the task of weakly supervised fine-grained object recog-
nition for tree species classification, which is more challenging than traditional RSWSOD
given the very low inter-class variance. The problem is addressed by exploiting a modified
WSDDN. The same authors, in a following work [26], address the issue under the presence
of multiple sources. In this case, WSDDN is used to perform RSWSOD using multispectral
images and LiDAR data, while the RGB images (assumed to have no location uncertainty)
are exploited as a reference to aid data fusion, which is a critical step in multi-source
scenarios.

Other works try to leverage the advancements of RSWSOD to perform more specific
tasks or use different types of aerial images. For instance, Du et al. [20] proposed an
RSWSOD method based on the TSI + TDL framework and image-level labels to detect
objects in synthetic aperture radar (SAR) images. The training set is initially selected
using the unsupervised latent Dirichlet allocation (LDA) [80] and iteratively updated by a
linear SVM discriminator. Candidate proposals are generated using the log-normal-based
constant false alarm rate (CFAR) and the target clustering methods [81]. Shi et al. [23]
proposed a WS method for cap missing detection, exploiting OBB instead of HBB to reduce
background interference. Li et al. [48] proposed a region proposal network for geospatial
applications that considers Tobler’s First Law of geography, stating that “Everything is
related to everything else, but near things are more related than distant things”. The idea is
to convert the 2D object detection problem into a 1D temporal classification problem. The
method is applied for terrain feature detection.

More recently, Yang et al. [21] addressed the task of ship detection, exploiting an image
transformer [82] called PistonNet. PistonNet proposes the introduction of an artificial point
in the feature map, whose aim is to bring the background values to 0 while keeping the
important area to 1 to allow a clear separation between the two. The final bounding
boxes can be obtained by applying standard thresholding methods to the activation map.
Berg et al. [22] exploited an anomaly detection mechanism to detect marine animals from
aerial images. The idea is to adapt and modify the patch distribution modeling method
(PaDiM) [83], which is currently one of the state-of-the-art approaches used for visual
industrial inspection. By training this model with empty ocean images, the model will then
be able to detect animals as anomalies.

Even though impressive results have been obtained in recent years, there is still a big
gap between RSFSOD and RSWSOD (≈30–40% mAP). To reduce this gap, Li et al. [46]
proposed using point-based annotations, which are still far cheaper to obtain than BBs. The
point annotations were used to guide the region proposal selection in a fully supervised
detector, YOLOv5 [84]. The authors were able to reach a performance comparable to that of
a fully supervised method.

In Table 1, it is possible to notice that many of the approaches analyzed in this section
are use-case-specific. For this reason, they usually concentrate on solving challenges that
are strictly related to the specific task or application domain.

3. Benchmarking
3.1. RSI Datasets

Several datasets have been proposed in the literature for evaluating detection per-
formance on RSIs. Unfortunately, only a few have been released to provide a general
benchmark, while many others are use-case-specific. Table 2 illustrates the main properties
of the most common RSI datasets for the evaluation of RSWSOD techniques and reports
how many times the datasets have been used. All datasets are annotated with bounding
boxes, which means that they have been designed for FSOD. Still, they can be easily ex-
ploited for WSOD tasks by automatically labeling each training image with the class (or
classes) of the manually annotated bounding boxes. The number of these positive training
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images is reported in Table 2. The use of fine-grained annotated datasets for RSWSOD offers
the possibility to compare weakly and fully supervised methods on the same benchmark.
Table 3 reports results of RSWSOD techniques while Tables 4–6 also report the upper bound
of performance, defined by well-known fully supervised object detectors.

Table 2. Summary of the most common RSI datasets. For each dataset, we report the annotation
type, number of images, number of BB annotations, number of positive training images (for WSOD
tasks), number of classes, image characteristics, and number of times the dataset has been used for
the evaluation of RSWSOD methods.

Name Year Annotation
Type # Images # BB

Annotations
# Positive

Training Images # Classes Dimension
(Pixels)

Spatial
Resolution

Target Area
(Pixels) # Evaluated

ISPRS [85] 2010 BB 100 - - 1 (Vehicle) ≈900 × 700 8–15 cm 1150∼11,976 3

Google Earth [29] 2013 BB 120 - 50 1 (Airplane) ≈1000 × 800 ≈0.5 m 700∼25,488 5

Landsat-7 ETM+ [30] 2014 BB 180 - - 1 (Airport) 400 × 400 30 m 1760∼15,570 3

NWPU-VHR-10 [19] 2014 BB,
pixel 800 3896 150 10 533 × 597∼

1728 × 1028 0.08–2 m 1122∼174,724 4

NWPU-VHR-10.v2 [86] 2017 BB,
Pixel 1172 - - 10 400 × 400 - - 8

DOTA [10] 2018 Oriented BB 2806 188,282 1411 15 ≈4000 × 4000 - - 2

LEVIR [87] 2018 BB 21,952 11,028 400 3 600 × 800 0.2–1 m 10∼600 2

WSADD [42] 2020 BB 700 - 300 1 (Airplane) 768 × 768 0.3–2 m - 2

DIOR [9] 2020 BB 23,463 192,472 5862 20 800 × 800 0.5–30 m - 10

The dataset named Google Earth is a collection of 120 high-resolution images of
airports collected using the homonym service. It was proposed by Zhang et al. [29] to
demonstrate that their algorithm can deal with multi-size targets in large-scale RSIs with
cluttered backgrounds. Zhang et al. [30] extended the airplane detection task to also include
vehicles and airports and incorporated images from ISPRS and Landsat-7 ETM+. The
ISPRS dataset provides vehicles with 100 high-resolution images provided by the German
Association of Photogrammetry and Remote Sensing [85]. The Landsat-7 ETM+ dataset is
acquired by the homonym sensor and includes 180 infrared RSIs of a variety of airports in
China [30].

In 2014, Cheng et al. [19] proposed a dataset named NWPU VHR-10 with ten classes,
containing images from Google Earth and the German Association of Photogrammetry
and Remote Sensing [85]. The classes are Airplane, Ship, Storage Tank, Baseball Diamond,
Tennis Court, Basketball Court, Ground Track Field, Harbor, Bridge and Vehicle. A few years
later, Li et al. [86] standardized NWPU VHR-10 proposing the NWPU VHR-10.v2 dataset.
In particular, 1172 images of 400 × 400 pixels were obtained by cropping the positive
images of the NWPU VHR-10 dataset in which image sizes are different (from 533 × 597 to
1728 × 1028 pixels). The number of classes was instead left unmodified.

In 2018, Xia et al. [10] proposed DOTA, a dataset containing oriented BB annotations.
DOTA has been presented as a large-scale benchmark dataset and an object detection
challenge. Fifteen classes were annotated: airplane, ship, storage tank, baseball diamond, tennis
court, swimming pool, ground track field, harbor, bridge, large vehicle, small vehicle, helicopter,
roundabout, soccer ball field, and basketball court.

LEVIR was proposed by Zou et al. [87] and contains many high-resolution Google
Earth images. LEVIR covers most types of ground features of the human living environ-
ment, e.g., city, country, mountain area, and ocean. There are three classes: airplane, oil
plot, and ship. It is important to note that LEVIR is different from LEVIR-CD [88], a remote
sensing building change detection dataset.

WSADD is an airplane detection dataset proposed by Wu et al. [42]. The images in
this dataset include airports and nearby areas of different countries (mainly from China, the
United States, the United Kingdom, France, Japan, and Singapore) taken from Google Earth.
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In 2020, Li et al. [9] conducted a deep study on the existing RSI datasets and concluded
by proposing DIOR. DIOR is one of the earth observation community’s largest, most
diverse, and publicly available object detection datasets. It is a particularly challenging
dataset due to the variety of object sizes and imaging conditions such as weather conditions
and seasons. The classes are: airplane, airport, baseball field, basketball court, bridge, chimney,
dam, expressway service area, expressway toll station, golf course, ground track field, harbor,
overpass, ship, stadium, storage tank, tennis court, train station, vehicle, and wind mill. It is
important to note that DIOR has high inter-class similarity and intra-class diversity, and
the number of object instances per class is not balanced.

3.2. Evaluation

In this section, a performance comparison between the surveyed methods is provided.
The analysis is performed on the three most commonly used RSI datasets: Google Earth [29],
DIOR [9] and NWPU VHR-10.v2 [86]. Table 3 reports the overall results in terms of average
precision (AP) or mean average precision (mAP) and CorLoc [89], when available. It is
possible to notice that only half of the analyzed methods evaluate their performance on
these datasets. Indeed, many studies in the remote sensing field make use of custom or use-
case-specific datasets and other metrics, e.g., precision–recall curve, overall accuracy, or F1
score. Thus, it is impossible to make a fair comparison between them. Table 7 summarizes
the performance of such methods.

Table 3. Overall results of the methods on the main datasets. Only the methods with available results
on DIOR, NWPU VHR-10.v2, or Google Earth are reported. The best performance for each data set is
indicated in bold.

Name Approach Year
Google Earth NWPU VHR-10.v2 DIOR

AP mAP CorLoc mAP CorLoc

Zhang et al. [29] TSI + TDL 2014 54.18% - - - -

Han et al. [31] TSI + TDL 2014 60.16% - - - -

Zhang et al. [30] TSI + TDL 2014 66.42% - - - -

Zhou et al. [33] TSI + TDL 2015 75.58% - - - -

Zhou et al. [34] TSI + TDL 2016 76.26% - - - -

FCC-Net [40] MIL 2020 - - 18.30% 41.70% -

DCL [41] MIL 2020 - 52.11% 69.65% 20.19% 42.23%

PCIR [15] MIL 2020 - 54.97% 71.87% 24.92% 46.12%

AlexNet-WSL [42] CAM 2020 - - - 18.78% -

TCANet [16] MIL 2020 - 58.82% 72.76% 25.82% 48.41%

Wang et al. [45] MIL + CAM 2021 - 53.60% 61.50% - -

SDA-RSOD [17] CAM 2022 - - - 24.11% -

MIGL [47] MIL 2021 - 55.95% 70.16% 25.11% 46.80%

SAENet [49] MIL 2021 - 60.72% 73.46% 27.10% 49.42%

SPG + MELM [51] MIL 2022 - 62.80% 73.41% 25.77% 48.30%

Qian et al. [18] MIL 2022 - 61.49% 73.68% 27.52% 49.92%

Looking at Table 3, it is possible to notice that CAM-based methods have been less
evaluated on these three challenging datasets. This may happen because, as analyzed in
Section 2.3.3, CAM-based approaches are used for specific tasks such as aircraft detection.
Another factor influencing this trend is that CAMs work well when there are few large
instances in the image [12]. For this reason, MIL-based approaches seem more effective
than CAM-based ones in RSIs, where multiple instances are present. However, recently,
this performance gap has been reduced by the work of Wu et al. [17] (SDA-RSOD).



Remote Sens. 2022, 14, 5362 17 of 29

It is important to note that the overall performance of the methods increases over the
years independently of the dataset, demonstrating the effectiveness of the research in the
remote sensing domain.

3.2.1. Google Earth Dataset

The methods developed before the advent of DL have been evaluated on the Google
Earth dataset. These methods cannot be compared with DL-based approaches proposed
after 2020 since the evaluation data are different (Table 3).

Table 4 shows a clear increasing trend in the performance over the years. This is not
surprising given that most of the methods are based on the work by Zhang et al. [29,30] and
try to leverage better feature extractors (e.g., DBM and CNN) or training set initialization
techniques (negative bootstrapping).

Table 4. Results of the methods on the Google Earth dataset. Furthermore, well-known methods
from the literature are reported for a fair comparison. The best-performing techniques are indicated
in bold.

Name Type Year AP

BOV [90] FSOD 2010 52.75%

Han et al. [91] FSOD 2014 54.21%

Zhang et al. [30] FSOD 2014 59.67%

Zhang et al. [29] RSWSOD 2014 54.18%

Zhang et al. [30] RSWSOD 2014 66.42%

Han et al. [31] RSWSOD 2014 60.16%

Zhou et al. [33] RSWSOD 2015 75.58%

Zhou et al. [34] RSWSOD 2016 76.26%

Regarding Zhang et al. [30], the reported result is the one obtained using the locality-
constrained linear coding (LLC) [92] feature to represent each of the training examples since
it provides the best performance. Moreover, in 2014, the authors showed that the proposed
RSWSOD architecture could perform comparably to FSOD models and sometimes even
outperform them. The clear improvements obtained by subsequent methods show that the
usage of more powerful feature extractors such as CNN allows fully supervised approaches
to be outperformed based on handcrafted features (BOV [93] and FDDL [91]). The results
are consistent with the literature stating that handcrafted features are not powerful enough
to accurately describe objects in RSIs [31,33,34].

3.2.2. DIOR Dataset

Table 5 presents the evaluation of various WSOD and RSWSOD methods on the DIOR
dataset. The upper bound of performance is provided by two FSOD architectures. It can be
noted that the performance of WSDNN [13] (a relevant milestone in WSOD) is improved by
methods such as OICR [14] and PCL [63] which are based on its framework. The reason is
that each of these methods tries to overcome the limitations of previous methods such as the
discriminative region and the multiple-instance problems. However, these techniques are
not capable of reaching satisfying performances when dealing with more challenging data
such as RSIs. It can be seen that RSWSOD techniques significantly improve performances
with respect to those developed for natural images. For instance, PCIR [15], which is an
OICR-inspired method, can improve performance over OICR of 8.42% mAP, demonstrating
the effectiveness of the developed specific network adaptations.

Considering two of the most recent works, TCANet [16] and its derivative work
SAENet [49], an improvement of 1.28% can be seen. This can be because SAENet considers
the consistency across different spatial transformations of the same image, which was
ignored by previous approaches and could hurt the detector performances. Furthermore,
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Qian et al. [18] were able to obtain state-of-the-art performances for RSWSOD, taking
into consideration the imbalance between easy and hard samples, which had not been
previously considered.

Another interesting point concerns the region proposal generation step that is part
of the MIL-based framework. As already pointed out in several works [41,45,46], high-
quality proposals are needed to obtain high-quality detectors. However, most of the
approaches make use of selective search [52] or similar methods to produce candidates
(Table 1). It has been demonstrated that these proposals cannot cover the entire object well,
severely hindering the performance of WSOD. This problem is effectively addressed by
Cheng et al. [51] through a region proposal network. Using the RPN with the Min-Entropy
Latent Model (MELM) [67], the authors can obtain an improvement of 7.11% over the basic
MELM method [67], confirming the importance of high-quality proposals.

MIL-based approaches seem to be more effective than CAM-based methods, though
the gap has been reduced by Wu et al. [17] (SDA-RSOD). The proposed CAM-based method
has lower variance over the classes, while state-of-the-art MIL-based approaches tend to
obtain good performances in some classes and terrible performances (almost 0% mAP)
in others. For instance, the method of Qian et al. [18], the best-performing MIL-based
approach on the DIOR dataset, shows an mAP of 27.52%, with the best precision on Baseball
field (67.46%) and the worst precision on Dam (0.74%). Instead, SDA-RSOD shows an
mAP of 24.11%, with the best precision on Golf field (61.04%) and the worst precision on
Storage Tank (7.53%). The overall performance is slightly lower, but the results are far more
balanced between classes.

Another thing that can be noticed is that most methods tend to perform quite well
on classes such as Baseball field, Chimney, Ground track field, and Stadium. This is
mainly because the objects of all these classes usually occupy a large part of the images
and have a relatively low probability of co-occurrence with other classes [41]. Instead,
the complex background and the fact that there can be coexisting objects may hurt the
detector’s discriminative power [16]. For instance, Bridge is considered a challenging class
because it is almost always matched with a river in the background. The same holds for
Dam as these objects usually coexist with reservoirs. A similar problem also arises for the
Windmill class, whose shadow is usually detected instead of the object itself. Different
imaging angles and illumination conditions can lead to the background features being
more prominent than the object features [16].

In addition, it is interesting to note that there is not a method able to outperform
all other techniques in (almost) every class, even when considering an approach and
its immediate improvement (e.g., TCANet [16] and SAENet [49]). This shows that it is
extremely difficult to improve the overall performance of RSWSOD without damaging the
detection capability of some classes.

Differently from what happens in WSOD for natural images [13,14,63], almost every
RSWSOD approach tackles the task from a brand new perspective without building on
top of previous RSWSOD architectures. Previous work is explicitly used as a baseline and
improved only when the authors are the same [16,49]. This may happen because the code
is not publicly available.

Table 5 also shows that all the network adaptations proposed by RSWSOD techniques
are still not enough to reach a performance comparable to the fully supervised counterparts.
Qian et al. [18], the best-performing RSWOSD method, obtains 27.52% mAP, while Faster
R-CNN can double the performance with 55.48% mAP.
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Table 5. Results of the methods on the DIOR dataset. Two well-known fully supervised methods from the literature are reported for a fair comparison. The columns
report the Average Precision (AP) for each category, the mean Average Precision (mAP), and the CorLoc for each method. The best-performing techniques for each
class are indicated in bold.

Name Type Year Airplane Airport Baseb.
Field

Basketb.
Court Bridge Chimney Dam

Expr.
Service

Area

Expr.
Toll

Station

Golf
Field

Ground
Track
Field

Harbor Overp. Ship Stadium Storage
Tank

Tennis
Court

Train
Station Vehicle Windm. mAP CorLoc

Fast RCNN [94] FSOD 2015 44.17% 66.79% 66.96% 60.49% 15.56% 72.28% 51.95% 65.87% 44.76% 72.11% 62.93% 46.18% 38.03% 32.13% 70.98% 35.04% 58.27% 37.91% 19.20% 38.10% 49.98% -

Faster RCNN [62] FSOD 2015 50.28% 62.60% 66.04% 80.88% 28.80% 68.17% 47.26% 58.51% 48.06% 60.44% 67.00% 43.86% 46.87% 58.48% 52.37% 42.53% 79.52% 48.02% 34.77% 65.44% 55.48% -

WSDDN [13] WSOD 2016 9.06% 39.68% 37.81% 20.16% 0.25% 12.18% 0.57% 0.65% 11.88% 4.90% 42.35% 4.66% 1.06% 0.70% 63.03% 3.95% 6.06% 0.51% 4.55% 1.14% 13.26% 32.40%

CAM [72] WSOD 2016 2.66% 34.63% 16.87% 16.70% 10.59% 25.43% 17.66% 25.40% 25.87% 56.23% 17.68% 12.86% 25.32% 0.11% 9.27% 0.84% 6.64% 46.00% 1.48% 9.08% 18.07% -

OICR [14] WSOD 2017 8.70% 28.26% 44.05% 18.22% 1.30% 20.15% 0.09% 0.65% 29.89% 13.80% 57.39% 10.66% 11.06% 9.09% 59.29% 7.10% 0.68% 0.14% 9.09% 0.41% 16.50% 34.80%

PCL [63] WSOD 2018 21.52% 35.19% 59.80% 23.49% 2.95% 43.71% 0.12% 0.90% 1.49% 2.88% 56.36% 16.76% 11.05% 9.09% 57.62% 9.09% 2.47% 0.12% 4.55% 4.55% 18.19% 41.52%

MELM [67] WSOD 2018 28.14% 3.23% 62.51% 28.72% 0.06% 62.51% 0.21% 13.09% 28.39% 15.15% 41.05% 26.12% 0.43% 9.09% 8.58% 15.02% 20.57% 9.81% 0.04% 0.53% 18.66% -

ACol [95] WSOD 2018 0.15% 7.62% 2.38% 0.00% 0.00% 0.04% 6.10% 7.82% 0.78% 27.72% 13.18% 9.43% 20.56% 0.13% 0.00% 0.63% 2.27% 18.68% 0.17% 0.27% 5.89% -

DaNet [75] WSOD 2019 1.33% 33.41% 13.46% 17.95% 12.99% 21.60% 17.20% 25.84% 19.68% 53.98% 19.86% 12.63% 24.31% 0.43% 12.37% 0.56% 5.85% 49.57% 1.11% 3.08% 17.37% -

MIST [69] WSOD 2020 32.01% 39.87% 62.71% 28.97% 7.46% 12.87% 0.31% 5.14% 17.38% 51.02% 49.48% 5.36% 12.24% 29.43% 35.53% 25.36% 0.81% 4.59% 22.22% 0.80% 22.18% 43.57%

AlexNet-WSL [42] RSWSOD 2020 2.94% 35.58% 17.92% 18.20% 12.10% 25.91% 18.71% 26.44% 25.46% 56.56% 19.24% 12.91% 25.83% 0.64% 10.39% 1.19% 7.05% 47.07% 1.74% 9.78% 18.78% -

PCIR [15] RSWSOD 2020 30.37% 36.06% 54.22% 26.60% 9.09% 58.59% 0.22% 9.65% 36.18% 32.59% 58.51% 8.60% 21.63% 12.09% 64.28% 9.09% 13.62% 0.30% 9.09% 7.52% 24.92% 46.12%

DCL [41] RSWSOD 2020 20.89% 22.70% 54.12% 11.50% 6.03% 61.01% 0.09% 1.07% 31.01% 30.87% 56.45% 5.05% 2.65% 9.09% 63.65% 9.09% 10.36% 0.02% 7.27% 0.79% 20.19% 42.23%

FCC-Net [40] RSWSOD 2020 20.10% 38.80% 52.00% 23.40% 1.80% 22.30% 0.20% 0.60% 28.70% 14.10% 56.00% 11.10% 10.90% 10.00% 57.50% 9.10% 3.60% 0.10% 5.90% 0.70% 18.30% 41.70%

TCANet [16] RSWSOD 2020 25.13% 30.84% 62.92% 40.00% 4.13% 67.78% 8.07% 23.80% 29.89% 22.34% 53.85% 24.84% 11.06% 9.09% 46.40% 13.74% 30.98% 1.47% 9.09% 1.00% 25.82% 48.41%

MIGL [47] RSWSOD 2021 22.20% 52.57% 62.76% 25.78% 8.47% 67.42% 0.66% 8.85% 28.71% 57.28% 47.73% 23.77% 0.77% 6.42% 54.13% 13.15% 4.12% 14.76% 0.23% 2.43% 25.11% 46.80%

SAENet [49] RSWSOD 2021 20.57% 62.41% 62.65% 23.54% 7.59% 64.62% 0.20% 34.52% 30.62% 55.38% 52.70% 17.57% 6.85% 9.09% 51.59% 15.43% 1.69% 14.41% 1.41% 9.16% 27.10% 49.42%

SDA-RSOD [17] RSWSOD 2022 19.51% 38.86% 26.40% 23.56% 13.30% 26.84% 25.33% 27.09% 27.17% 61.04% 20.89% 16.78% 25.57% 8.28% 10.34% 7.53% 26.52% 48.81% 9.28% 19.16% 24.11% -

SPG + MELM [51] RSWSOD 2022 31.32% 36.66% 62.79% 29.10% 6.08% 62.66% 0.31% 15.00% 30.10% 35.00% 48.02% 27.11% 12.00% 10.02% 60.04% 15.10% 21.00% 9.92% 3.15% 0.06% 25.77% 48.30%

Qian et al. [18] RSWSOD 2022 41.10% 48.62% 67.48% 33.92% 4.32% 34.71% 0.74% 12.29% 24.33% 56.74% 63.55% 5.36% 23.11% 21.34% 57.44% 24.66% 0.85% 9.97% 18.34% 1.54% 27.52% 49.92%
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A final comparison between the WSOD and RSWSOD architectures’ performance on
the DIOR dataset is reported in Figure 9. It is possible to notice a clear separation between
the two categorizations, mainly because many RSWSOD works are based on a WSOD
counterpart with the addition of specific adaptations. It can be noted that MIL-based and
CAM-based WSOD methods obtain similar performances (≈18% mAP) except for MIST,
while almost all RSWSOD methods have stable performances around ≈25–30% mAP. Only
a few early RSWSOD techniques obtain negligible improvements over WSOD architectures.
This figure confirms all the already discussed advantages brought by RSWSOD methods.

Figure 9. Mean Average Precision (mAP) trend of WSOD and RSWSOD methods on the DIOR dataset
over the years. It is possible to notice that most RSWSOD methods are presented after 2020, and their
performances are ≈5–10% better than the WSOD baselines [18].

3.2.3. NWPU VHR-10.v2 Dataset

As shown in Table 6, most of the considerations described for the DIOR dataset hold
also for NWPU VHR-10.v2. The first thing that can be noticed is that performances are
much higher on this dataset for all methods, both fully and weakly supervised (≈30–40%
mAP more than DIOR presented in Table 5). This is because NWPU VHR-10.v2 is less
challenging. In fact, besides having half of the classes of DIOR and very few images, the
image diversity and variance are limited. As already outlined in Section 3.1, DIOR was
built with the intent of having a large-scale dataset that could solve the limitations of other
RSIs datasets, guaranteeing large size variations, high inter-class similarity, high intra-class
diversity, and variations in terms of image condition, weather, and season.

From Table 6 the performance gap between WSOD and RSWSOD methods is evident.
For instance, PCIR gains 20.45% mAP over OICR, and SPG boosts the performance of
MELM by 20.51% thanks to the usage of an RPN. This again shows the importance of having
high-quality proposals and specific network adaptations addressing the RSI challenges.
Nonetheless, there is still a huge performance gap (≈25% mAP) between FSOD and
RSWSOD methods, with Faster R-CNN obtaining 87.12% mAP and SPG + MELM 62.80%
mAP. indicating the fact that the complexity of the dataset contributes only partially to the
predominance of full supervision.

Furthermore, as shown in Figure 10, the performance of the various methods on each
class is highly variant. Finally, there is also a considerable gap between the performance in
some classes (e.g., Airplane, Baseball Diamond, and Ground Track Field) with respect to
others (e.g., Bridge and Vehicle). Similarly to DIOR, this means that some classes are more
challenging to identify than others or may be easily confused with the background (e.g.,
bridges may be confused with rivers).
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3.2.4. Other Performances

The performances of the methods reported in this section are not comparable because
they are use-case-specific and evaluated on custom datasets and with different metrics.

Looking at Table 7, it is possible to see that some methods obtain very high perfor-
mances, while others slightly overcome 50% of accuracy or F1 score. A possible reason may
reside in the difficulty of the task being solved. For instance, aircraft detection, for which
the analyzed methods obtain impressive performance, is far easier than marine animal
detection, for which the reported performance is much lower.

Moreover, the performances on the reported datasets are often far better than those re-
ported on DIOR and NWPU VHR-10.v2, probably because these datasets contain a reduced
amount of classes. Instead, DIOR and NWPU VHR-10.v2 were specifically constructed to
build challenging benchmarks. These results further emphasize the difficulty induced by
the high intra-class diversity and the high inter-class similarity, obviously mitigated when
the number of classes in the dataset is lower.

Aygunes et al. [26] show a significant improvement in the tree species detection task
using multiple sources from the previous work of the same authors [25].

Sun et al. [44] show the difficulty of the oriented object detection task. This can be
observed by looking at the performance on the DOTA dataset with oriented BBs, which is
less than half of the mAP obtained by MPFP-Net [43] using horizontal BBs. Still, the gap
between Sun et al. [44] and a fully supervised method such as oriented R-CNN [96] is over
40% mAP.

Finally, another interesting observation concerns PistonNet [21]. In particular, it can
be observed that the performance of this method on NWPU VHR-10 is 11.38% lower than
MPFP-Net [43]. However, this result is promising since PistonNet was built to address
the specific task of ship detection but shows interesting generalization capabilities when
applied to a multi-class dataset.

Figure 10. Box plot of average precision by class of all the WSOD/RSWOD methods on the NWPU
VHR-10.v2 dataset. It is possible to notice that there is high inter-class performance variance based
on the classes’ difficulty (e.g., Ground Track Field and Bridge).
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Table 6. Results of the methods on the NWPU VHR-10.v2 dataset. Three well-known fully supervised methods from the literature are reported for a fair comparison.
The columns report the Average Precision (AP) for each category, the mean Average Precision (mAP), and the CorLoc for each method. The best-performing
techniques for each class are indicated in bold.

Name Type Year Airplane Ship Storage Tank Basketball
Court

Tennis
Court

Basketball
Court

Ground
Truck
Field

Harbor Bridge Vehicle mAP CorLoc

Fast RCNN [94] FSOD 2015 90.91% 90.60% 89.29% 47.32% 100.00% 85.85% 84.86% 88.22% 80.29% 69.84% 82.71% -

Faster RCNN [62] FSOD 2015 90.90% 86.30% 90.53% 98.24% 89.72% 80.13% 90.81% 80.29% 68.53% 87.14% 84.52% -

RICO [86] FSOD 2017 99.70% 90.80% 90.61% 92.91% 90.29% 80.13% 90.81% 80.29% 68.53% 87.21% 87.12% -

WSDDN [13] WSOD 2016 30.08% 41.72% 34.98% 88.90% 12.86% 23.85% 99.43% 13.94% 1.92% 3.60% 35.12% 35.24%

OICR [14] WSOD 2017 13.66% 67.35% 57.16% 55.16% 13.64% 39.66% 92.80% 0.23% 1.84% 3.73% 34.52% 40.01%

PCL [63] WSOD 2018 26.00% 63.76% 2.50% 89.80% 64.45% 76.07% 77.94% 0.00% 1.30% 15.67% 39.41% 45.06%

MELM [67] WSOD 2018 80.86% 69.30% 10.48% 90.17% 12.84% 20.14% 99.17% 17.10% 14.17% 8.68% 42.29% 49.87%

MIST [69] WSOD 2020 69.68% 49.16% 48.55% 80.91% 27.08% 79.85% 91.34% 46.99% 8.29% 13.36% 51.52% 70.34%

PCIR [15] RSWSOD 2020 90.97% 78.81% 36.40% 90.80% 22.64% 52.16% 88.51% 42.36% 11.74% 35.49% 54.97% 71.87%

DCL [41] RSWSOD 2020 72.70% 74.25% 37.05% 82.64% 36.88% 42.27% 83.95% 39.57% 16.82% 35.00% 52.11% 69.65%

TCANet [16] RSWSOD 2020 89.43% 78.18% 78.42% 90.80% 35.27% 50.36% 90.91% 42.44% 4.11% 28.30% 58.82% 72.76%

Wang et al. [45] RSWSOD 2021 80.90% 78.30% 10.50% 90.10% 64.40% 69.10% 80.20% 39.60% 14.00% 8.70% 53.60% 61.50%

MIGL [47] RSWSOD 2021 88.69% 71.61% 75.17% 94.19% 37.45% 47.68% 100.00% 27.27% 8.33% 9.06% 55.95% 70.16%

SAENet [49] RSWSOD 2021 82.91% 74.47% 50.20% 96.74% 55.66% 72.94% 100.00% 36.46% 6.33% 31.89% 60.72% 73.46%

SPG + MELM [51] RSWSOD 2022 90.42% 81.00% 59.53% 92.31% 35.64% 51.44% 99.92% 58.71% 16.99% 42.99% 62.80% 73.41%

Qian et al. [18] RSWSOD 2022 81.64% 68.33% 65.31% 93.44% 36.43% 81.54% 98.67% 53.77% 9.86% 25.87% 61.49% 73.68%
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Table 7. Results of surveyed methods evaluated on specific datasets. Works are sorted by year and
grouped when using similar datasets. For each method, the used dataset, number of classes, and
performance are reported. Performance metrics are: PR curve (no value), accuracy, F1 score, and
mean average precision (mAP).

Name Year Dataset Classes Performance

Cheng et al. [32] 2014 Custom Google Earth 3 n/d (PR Curve)

Cao et al. [36] 2017 Custom Google Earth 1 (vehicles) n/d (PR Curve)

MIRN [37] 2018 Custom Google Earth 1 (vehicles) n/d (PR Curve)

Tokyo Airport 1 (aircraft) 98.46% Acc.
Sidney Airport 1 (aircraft) 89.13% Acc.LocNet [35] 2016
Berlin Airport 1 (aircraft) 96.77% Acc.

Tokyo Airport 1 (aircraft) 96.92% Acc.WSA [39] 2019 Sidney Airport 1 (aircraft) 95.65% Acc.

SLS [38] 2018 NWPU VHR-9 9 (no vehicles) 11% mAP

18 (trees) 60.60% Acc.Aygunes et al. [25] 2019 Custom 8-b MS WV-2 40 (trees) 42.50% Acc.

Custom Seattle Trees, 8-b MS WV-2 40 (trees) 51.70% Acc.Aygunes et al. [26] 2021 Custom Seattle Trees, 8-b MS WV-2, LiDar DSM 40 (trees) 53.00% Acc.

NWPU VHR-10 10 94.57% mAP
LEVIR 3 86.73% mAPMPFP-Net [43] 2021

DOTA (HBB) 15 84.43% mAP

Sun et al. [44] 2021 DOTA (OBB) 15 38.6% mAP

Du et al. [20] 2019 miniSAR 1 (vehicles) 84.85% F1

FIN 4 90% mAPShi et al. [23] 2020 GCAP 2 93% mAP

Li et al. [46] 2021 Custom NWPU VHR-10 4 92.40% mAP

Li et al. [48] 2021 Custom Mars craters 1 80.00% mAP

Semmacape 8 53.00% F1Berg et al. [22] 2022 Custom Kelonia 2 56.80% F1

Long et al. [50] 2022 Custom World Map, Google Maps 2 89% F1

GF1-LRSD 1 81.25% mAPPistonNet [21] 2022 NWPU VHR-10 10 83.19% mAP

4. Issues and Research Directions

The road map of the methods described in Section 2.3 shows that research in this field
is gaining more and more interest. In recent years, there has been a promising improvement
in the results obtained, meaning that taking into consideration specific RSI challenges is
effective. However, the results show that the gap with respect to FS approaches is still
relevant. The solutions proposed for these challenges only provide a partial improvement
and the RSWSOD problem has yet to be solved efficiently.

A significant issue is related to the unavailability of the code (apart from a couple
of works [17,22]) making it difficult for researchers to build novel methods upon existing
architectures and to have a baseline for new contributions. This may be the reason why no
surveyed methods used other RSWSOD works as a starting point. In WSOD for natural
images, the authors responsible for WSDDN [13], OICR [14], and MELM [67] made their
code publicly available, ensuring a faster advancement of the research.

Another important point is related to the comparability of the results, which can
only be partially assessed, because of the massive usage of different datasets and metrics,
making it difficult to evaluate and compare the performance of a method comprehensively.

The review of RSWSOD methods, the analysis of results, and the identification of
issues allow the definition of a set of possible future research directions.

• Coarser annotations: This survey highlighted the fact that almost all RSWSOD ap-
proaches are based on image-level labels. Even though this type of annotation is the
easiest to obtain, it does not provide any clue regarding the localization of the object.
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Li et al. [46] recently showed that exploiting other types of labels, e.g., point-based,
which are still cheaper than manual BBs, allows performances that are comparable to
FS approaches to be obtained. Thus, more research in this direction should be carried
out, considering a trade-off between annotation cost and overall model performance.

• Interactive annotations: given the difficulty in correctly detecting some classes, a
viable option could be to learn a WS detector and then use human verification to
check the correctness of the output BBs and refine them [97]. This could reduce the
annotation time and produce high-quality annotations while decreasing the gap with
fully supervised settings.

• Hybrid architectures: As reported in the survey, two major categories of approaches
are currently leading the research in RSWSOD: MIL-based and CAM-based methods.
MIL-based approaches usually provide better overall performances but the perfor-
mance of each class is highly varied. On the other hand, CAM-based approaches
are less widespread and effective than MIL-based approaches but they tend to be
more stable in terms of performance over the classes. For this reason, it could be
interesting to build hybrid approaches that exploit the advantages of both methods.
A first approach was proposed by Wang et al. [45] and exploit CAMs to guide the
selection of proposals that are then fed to a MIL-based detector. Still, there is a large
room for improvement.

• Transformer-based architectures: Transformers were born to tackle natural language
processing (NLP) problems, but their usage has gained much attention in the CV field
due to their powerful capabilities. PistonNet [21] showed interesting results with the
use of image transformers [82] and provided good generalization capabilities, despite
being developed for the specific use-case of ship detection. This powerful family of
architectures could be extended to general-purpose RSWSOD.

• Better initial proposals: As shown by Cheng et al. [51], proposal generation is a very
critical step because the performance of an MIL-based method is strongly dependent
on the quality of the initial proposal. For this reason, developing novel proposal
generation methods is fundamental, especially when specific use-cases are addressed,
and could boost the performance of WS approaches.

• Transformation consistency and sample difficulty: Recently, Feng et al. [49] brought
to the attention of the remote sensing community that previous methods did not
take into consideration the consistency across different spatial transformations of the
same image, with different augmentations of the same image potentially being labeled
differently. At the same time, Qian et al. [18] showed the importance of considering
the samples’ difficulty when training the detector. These factors should be carefully
taken into consideration when developing future works.

• Learn better representations of the data: Self-supervised learning (SSL) [98] has
recently gained much attention in the remote sensing field [99] since it allows better
representations of the data to be learned. Instead of pre-training networks on huge
datasets of natural images (e.g., ImageNet [7]), it could be interesting to combine
self-supervised feature learning in RSIs and weak supervision. This could potentially
help improve the performance of WS approaches. For instance, it could be especially
useful for those classes that are easily misclassified, such as Bridges and Windmills.

• Benchmark definition: As highlighted in this survey, almost half of the analyzed
methods rely on the use of custom datasets. However, this makes it extremely difficult
to compare methods with each other. A step in this direction was achieved with the
introduction of DIOR [9] and NWPU VHR-10.v2 [86]. However, this is still insufficient
for all single-object detection methods. A possibility could be to assess the performance
of these methods on single-object images extracted from these datasets. For instance,
the performance of airplane detection on the images belonging to the Airplane class
of DIOR could be assessed.
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5. Conclusions

This survey presents a review of 33 state-of-the-art works for the task of remote
sensing weakly supervised object detection. The main properties of these methods have
been discussed and analyzed: annotation type, approach, and addressed challenges. The
advantages and disadvantages of the surveyed works have been described to help the
reader to obtain a clear and up-to-date view of the current literature in the field. The novel
characteristics of the analyzed research are further emphasized.

A list of the most used datasets and an in-depth analysis of the performance are
reported. Several issues emerge from the survey, explaining the large gap between weakly
supervised and fully supervised techniques. For this reason, the most promising research
directions have been highlighted to help improve future research in the remote sensing
domain.
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Abbreviations

AD Anomaly Detection
AP Average Precision
BB Bounding Box
CAM Class Activation Map
CFAR Constant False Alarm Rate
CNN Convolutional Neural Network
COPD Collection of Part Detector
CV Computer Vision
DBM Deep Boltzmann Machine
DL Deep Learning
EB Edge Boxes
FSOD Fully Supervised Object Detection
GSD Ground Sample Distance
GT Ground Truth
HBB Horizontal Bounding Boxes
mAP Mean Average Precision
MIL Multiple Instance Learning
OBB Oriented Bounding Boxes
OD Object Detection
PLG Pseudo-label Generator
PR Precision Recall
RPN Region Proposal Network
RSFSOD Remote Sensing Fully Supervised Object Detection
RSI Remote Sensing Image
RSWSOD Remote Sensing Weakly Supervised Object Detection
SAR Synthetic Aperture Radar
Sb-SaS Saliency-based Self-adaptive Segmentation
SOTA State-of-the-art
SS Selective Search
SSL Self-supervised Learning
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SVM Support Vector Machine
SW Sliding Window
TDL Target Detector Learning
TSI Training Set Initialization
WS Weak Supervision
WSDDN Weakly Supervised Deep Detection Network
WSOD Weakly Supervised Object Detection
WSOL Weakly Supervised Object Localization
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